
TACsy Symmer School, Vienna 2024

Integer Linear Programming
Modelling, MinMax, Enumeration, CRN

Daniel Merkle, Christoph Flamm

3. juli 2024

Outline

1. Integer Programming

2. Modeling
Assignment Problem
Knapsack Problem
Set Problems

3. More on Modeling
Graph Problems

Matching
Vertex Cover
Traveling Salesman Problem

Modeling Tricks

4. ITS, Energy Barriers, PPP

2

Outline

1. Integer Programming

2. Modeling
Assignment Problem
Knapsack Problem
Set Problems

3. More on Modeling
Graph Problems

Matching
Vertex Cover
Traveling Salesman Problem

Modeling Tricks

4. ITS, Energy Barriers, PPP

3

Integer Linear Programming

Linear Objective
Linear Constraints
but! integer variables

max cT x
Ax ≤ b
x ≥ 0

max cT x
Ax ≤ b
x ≥ 0
x integer

max cT x
Ax ≤ b
x ∈ {0, 1}n

max cT x + hT y
Ax + Gy ≤ b

x ≥ 0
y ≥ 0
y integer

Linear Programming
(LP)

Integer Linear Programming
(ILP)

Binary Integer Program
(BIP)
0/1 Integer Programming

Mixed Integer Linear
Programming (MILP)

max f (x)
g(x) ≤ b

x ≥ 0
Non-linear Programming (NLP)

4

Integer Linear Programming

Linear Objective
Linear Constraints
but! integer variables

max cT x
Ax ≤ b
x ≥ 0

max cT x
Ax ≤ b
x ≥ 0
x integer

max cT x
Ax ≤ b
x ∈ {0, 1}n

max cT x + hT y
Ax + Gy ≤ b

x ≥ 0
y ≥ 0
y integer

Linear Programming
(LP)

Integer Linear Programming
(ILP)

Binary Integer Program
(BIP)
0/1 Integer Programming

Mixed Integer Linear
Programming (MILP)

max f (x)
g(x) ≤ b

x ≥ 0
Non-linear Programming (NLP)

4

Integer Linear Programming

Linear Objective
Linear Constraints
but! integer variables

max cT x
Ax ≤ b
x ≥ 0

max cT x
Ax ≤ b
x ≥ 0
x integer

max cT x
Ax ≤ b
x ∈ {0, 1}n

max cT x + hT y
Ax + Gy ≤ b

x ≥ 0
y ≥ 0
y integer

Linear Programming
(LP)

Integer Linear Programming
(ILP)

Binary Integer Program
(BIP)
0/1 Integer Programming

Mixed Integer Linear
Programming (MILP)

max f (x)
g(x) ≤ b

x ≥ 0
Non-linear Programming (NLP)

4

Integer Linear Programming

Linear Objective
Linear Constraints
but! integer variables

max cT x
Ax ≤ b
x ≥ 0

max cT x
Ax ≤ b
x ≥ 0
x integer

max cT x
Ax ≤ b
x ∈ {0, 1}n

max cT x + hT y
Ax + Gy ≤ b

x ≥ 0
y ≥ 0
y integer

Linear Programming
(LP)

Integer Linear Programming
(ILP)

Binary Integer Program
(BIP)
0/1 Integer Programming

Mixed Integer Linear
Programming (MILP)

max f (x)
g(x) ≤ b

x ≥ 0
Non-linear Programming (NLP)

4

Integer Linear Programming

Linear Objective
Linear Constraints
but! integer variables

max cT x
Ax ≤ b
x ≥ 0

max cT x
Ax ≤ b
x ≥ 0
x integer

max cT x
Ax ≤ b
x ∈ {0, 1}n

max cT x + hT y
Ax + Gy ≤ b

x ≥ 0
y ≥ 0
y integer

Linear Programming
(LP)

Integer Linear Programming
(ILP)

Binary Integer Program
(BIP)
0/1 Integer Programming

Mixed Integer Linear
Programming (MILP)

max f (x)
g(x) ≤ b

x ≥ 0
Non-linear Programming (NLP)

4

Integer Linear Programming

Linear Objective
Linear Constraints
but! integer variables

max cT x
Ax ≤ b
x ≥ 0

max cT x
Ax ≤ b
x ≥ 0
x integer

max cT x
Ax ≤ b
x ∈ {0, 1}n

max cT x + hT y
Ax + Gy ≤ b

x ≥ 0
y ≥ 0
y integer

Linear Programming
(LP)

Integer Linear Programming
(ILP)

Binary Integer Program
(BIP)
0/1 Integer Programming

Mixed Integer Linear
Programming (MILP)

max f (x)
g(x) ≤ b

x ≥ 0
Non-linear Programming (NLP)

4

Recall:

• Z set of integers

• Z+ set of positive integer

• Z+
0 set of nonnegative integers ({0} ∪ Z+)

• N0 set of natural numbers, ie, nonnegative integers {0, 1, 2, 3, 4, ...}

5

Outline

1. Integer Programming

2. Modeling
Assignment Problem
Knapsack Problem
Set Problems

3. More on Modeling
Graph Problems

Matching
Vertex Cover
Traveling Salesman Problem

Modeling Tricks

4. ITS, Energy Barriers, PPP

6

Mathematical Programming: Modeling

• Find out exactly what the decision maker needs to know:

• which investment?
• which product mix?
• which job j should a person i do?

• Define Decision Variables of suitable type (continuous, integer valued, binary) corresponding
to the needs and Known Parameters corresponding to given data.

• Formulate Objective Function computing the benefit/cost

• Formulate mathematical Constraints indicating the interplay between the different variables.

7

How to “build” a constraint

• Formulate relationship between the variables in plain words
• Then formulate your sentences using logical connectives and, or, not, implies
• Finally convert the logical statement to a mathematical constraint.

Example
• “The power plant must not work in both of two neighbouring time periods”
• on/off is modelled using binary integer variables
• xi = 1 or xi = 0
• xi = 1 implies ⇒ xi+1 = 0
• xi + xi+1 ≤ 1

8

Outline

1. Integer Programming

2. Modeling
Assignment Problem
Knapsack Problem
Set Problems

3. More on Modeling
Graph Problems

Matching
Vertex Cover
Traveling Salesman Problem

Modeling Tricks

4. ITS, Energy Barriers, PPP

9

The Assignment Problem

Problem
Common application: Assignees are being assigned to perform tasks.

Suppose we have n persons and n jobs
Each person has a certain proficiency at each job.

Formulate a mathematical model that can be used to find an assignment that maximizes the total
proficiency.

10

The Assignment Problem
Model

Decision Variables:

xij =

{
1 if person i is assigned job j
0 otherwise, for i , j = 1, 2, . . . , n

Objective Function:

max
n∑

i=1

n∑
j=1

ρijxij

where ρij is person i ’s proficiency at job j

11

The Assignment Problem
Model

Decision Variables:

xij =

{
1 if person i is assigned job j
0 otherwise, for i , j = 1, 2, . . . , n

Objective Function:

max
n∑

i=1

n∑
j=1

ρijxij

where ρij is person i ’s proficiency at job j

11

The Assignment Problem
Model

Decision Variables:

xij =

{
1 if person i is assigned job j
0 otherwise, for i , j = 1, 2, . . . , n

Objective Function:

max
n∑

i=1

n∑
j=1

ρijxij

where ρij is person i ’s proficiency at job j

11

The Assignment Problem
Model

Constraints:
Each person is assigned one job:

n∑
j=1

xij = 1 for all i

e.g. for person 1 we get x11 + x12 + x13 + · · ·+ x1n = 1

Each job is assigned to one person:

n∑
i=1

xij = 1 for all j

e.g. for job 1 we get x11 + x21 + x31 + · · ·+ xn1 = 1

12

Outline

1. Integer Programming

2. Modeling
Assignment Problem
Knapsack Problem
Set Problems

3. More on Modeling
Graph Problems

Matching
Vertex Cover
Traveling Salesman Problem

Modeling Tricks

4. ITS, Energy Barriers, PPP

13

The Knapsack Problem

Problem ..

Input: Given a set of n items, each with a value vi and weight wi (i = 1, . . . , n)

Task: determine (the numbers of) for each item to include in a collection so that the total weight
is less than a given limit, W , and the total value is as large as possible.

The “knapsack” name derives from the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most useful items.

Assuming we can take at least one of any item and that
∑

i wi > W , formulate a mathematical
model to determine which items give the largest value.

Model used, eg, in capital budgeting, project selection, etc.

14

The Knapsack Problem

Problem ..

Input: Given a set of n items, each with a value vi and weight wi (i = 1, . . . , n)

Task: determine (the numbers of) for each item to include in a collection so that the total weight
is less than a given limit, W , and the total value is as large as possible.

The “knapsack” name derives from the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most useful items.

Assuming we can take at least one of any item and that
∑

i wi > W , formulate a mathematical
model to determine which items give the largest value.

Model used, eg, in capital budgeting, project selection, etc.

14

The Knapsack Problem

Problem ..

Input: Given a set of n items, each with a value vi and weight wi (i = 1, . . . , n)

Task: determine (the numbers of) for each item to include in a collection so that the total weight
is less than a given limit, W , and the total value is as large as possible.

The “knapsack” name derives from the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most useful items.

Assuming we can take at least one of any item and that
∑

i wi > W , formulate a mathematical
model to determine which items give the largest value.

Model used, eg, in capital budgeting, project selection, etc.

14

The Knapsack Problem

Problem ..

Input: Given a set of n items, each with a value vi and weight wi (i = 1, . . . , n)

Task: determine (the numbers of) for each item to include in a collection so that the total weight
is less than a given limit, W , and the total value is as large as possible.

The “knapsack” name derives from the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most useful items.

Assuming we can take at least one of any item and that
∑

i wi > W , formulate a mathematical
model to determine which items give the largest value.

Model used, eg, in capital budgeting, project selection, etc.

14

The 0/1 Knapsack Problem

Decision Variables:

xi =

{
1 if item i is taken
0 otherwise, for i = 1, 2 . . . , n

Objective Function:

max
n∑

i=1

vixi

Constraints:
Knapsack capacity restriction:

n∑
i=1

wixi ≤ W

15

Run Gurobi/Python
pip install gurobipy
python3 knapsack.py

https://tacsy-school-2024.algochem.techfak.de/
16

https://tacsy-school-2024.algochem.techfak.de/

Outline

1. Integer Programming

2. Modeling
Assignment Problem
Knapsack Problem
Set Problems

3. More on Modeling
Graph Problems

Matching
Vertex Cover
Traveling Salesman Problem

Modeling Tricks

4. ITS, Energy Barriers, PPP

17

Set Covering

Problem
Given: a set of regions, a set of possible construction locations for emergency centers, regions that
can be served in less than 8 minutes, cost of installing an emergency center in each location.

Task: decide where to install a set of emergency centers such that the total cost is minimized and
all regions are safely served

As Combinatorial Optimization Problem (COP): M = {1, . . . ,m} regions, N = {1, . . . , n}
centers, Sj ⊆ M regions serviced by j ∈ N in 8 min.

min
T⊆N

∑
j∈T

cj

∣∣∣∣∣∣
⋃
j∈T

Sj = M


regions: M = {1, . . . , 5}
centers: N = {1, . . . , 6}
cost of centers: cj = 1 ∀j = 1, . . . , 6
coverages: S1 = (1, 2),S2 = (1, 3, 5),S3 = (2, 4, 5),S4 = (3),S5 = (1),S6 = (4, 5)

18

Set Covering

Problem
Given: a set of regions, a set of possible construction locations for emergency centers, regions that
can be served in less than 8 minutes, cost of installing an emergency center in each location.

Task: decide where to install a set of emergency centers such that the total cost is minimized and
all regions are safely served

As Combinatorial Optimization Problem (COP): M = {1, . . . ,m} regions, N = {1, . . . , n}
centers, Sj ⊆ M regions serviced by j ∈ N in 8 min.

min
T⊆N

∑
j∈T

cj

∣∣∣∣∣∣
⋃
j∈T

Sj = M



regions: M = {1, . . . , 5}
centers: N = {1, . . . , 6}
cost of centers: cj = 1 ∀j = 1, . . . , 6
coverages: S1 = (1, 2),S2 = (1, 3, 5),S3 = (2, 4, 5),S4 = (3),S5 = (1),S6 = (4, 5)

18

Set Covering

Problem
Given: a set of regions, a set of possible construction locations for emergency centers, regions that
can be served in less than 8 minutes, cost of installing an emergency center in each location.

Task: decide where to install a set of emergency centers such that the total cost is minimized and
all regions are safely served

As Combinatorial Optimization Problem (COP): M = {1, . . . ,m} regions, N = {1, . . . , n}
centers, Sj ⊆ M regions serviced by j ∈ N in 8 min.

min
T⊆N

∑
j∈T

cj

∣∣∣∣∣∣
⋃
j∈T

Sj = M


regions: M = {1, . . . , 5}
centers: N = {1, . . . , 6}
cost of centers: cj = 1 ∀j = 1, . . . , 6
coverages: S1 = (1, 2),S2 = (1, 3, 5),S3 = (2, 4, 5),S4 = (3),S5 = (1),S6 = (4, 5)

18

Example

• regions: M = {1, . . . , 5}
centers: N = {1, . . . , 6}
cost of centers: cj = 1 ∀j = 1, . . . , 6
coverages: S1 = (1, 2),S2 = (1, 3, 5),S3 = (2, 4, 5),S4 = (3),S5 = (1),S6 = (4, 5)

•

A =

x1 x2 x3 x4 x5 x6
S1 S2 S3 S4 S5 S6


1 1 1 0 0 1 0
2 1 0 1 0 0 0
3 0 1 0 1 0 0
4 0 0 1 0 0 1
5 0 1 1 0 0 1

19

As a BIP:

Variables:
x ∈ Bn, xj = 1 if center j is selected, 0 otherwise

Objective:

min
n∑

j=1

cjxj

Constraints:

• incidence matrix: aij =

{
1
0

• ∑n
j=1 aijxj ≥ 1

20

Set covering
cover each of M at least once

1. min, ≥
2. all RHS terms are 1
3. all matrix elements are 1

Set packing
cover as many of M without
overlap

1. max, ≤
2. all RHS terms are 1
3. all matrix elements are 1

Set partitioning
cover exactly once each element
of M

1. max or min, =
2. all RHS terms are 1
3. all matrix elements are 1

min cTx
Ax ≥ 1
x ∈ Bn

max cTx
Ax ≤ 1
x ∈ Bn

max cTx
Ax = 1
x ∈ Bn

Generalization: RHS ≥ 1
Application examples:

• Aircrew scheduling: M: legs to cover, N: rosters
• Vehicle routing: M: customers, N: routes

21

Set covering
cover each of M at least once

1. min, ≥
2. all RHS terms are 1
3. all matrix elements are 1

Set packing
cover as many of M without
overlap

1. max, ≤
2. all RHS terms are 1
3. all matrix elements are 1

Set partitioning
cover exactly once each element
of M

1. max or min, =
2. all RHS terms are 1
3. all matrix elements are 1

min cTx
Ax ≥ 1
x ∈ Bn

max cTx
Ax ≤ 1
x ∈ Bn

max cTx
Ax = 1
x ∈ Bn

Generalization: RHS ≥ 1
Application examples:

• Aircrew scheduling: M: legs to cover, N: rosters
• Vehicle routing: M: customers, N: routes

21

A good written example of how to present a model:

[from G. Desaulniers, J. Desrosiers, Y. Dumas, M.M. Solomon and F.
Soumis. Daily Aircraft Routing and Scheduling. Management Science, 1997,

43(6), 841-855]

Outline

1. Integer Programming

2. Modeling
Assignment Problem
Knapsack Problem
Set Problems

3. More on Modeling
Graph Problems

Matching
Vertex Cover
Traveling Salesman Problem

Modeling Tricks

4. ITS, Energy Barriers, PPP

24

Outline

1. Integer Programming

2. Modeling
Assignment Problem
Knapsack Problem
Set Problems

3. More on Modeling
Graph Problems

Matching
Vertex Cover
Traveling Salesman Problem

Modeling Tricks

4. ITS, Energy Barriers, PPP

26

Matching

Definition (Matching Theory Terminology)

Matching: set of pairwise non adjacent edges
Covered (vertex): a vertex is covered by a matching M if it is incident to an edge in M

Perfect (matching): if M covers each vertex in G

Maximal (matching): if M cannot be extended any further
Maximum (matching): if M covers as many vertices as possible
Matchable (graph): if the graph G has a perfect matching

max
∑
v∈V

wexe∑
e∈E :v∈e

xe ≤ 1 ∀v ∈ V

xe ∈ {0, 1} ∀e ∈ E

Special case: bipartite matching ≡ assignment problems

27

Matching

Definition (Matching Theory Terminology)

Matching: set of pairwise non adjacent edges
Covered (vertex): a vertex is covered by a matching M if it is incident to an edge in M

Perfect (matching): if M covers each vertex in G

Maximal (matching): if M cannot be extended any further
Maximum (matching): if M covers as many vertices as possible
Matchable (graph): if the graph G has a perfect matching

max
∑
v∈V

wexe∑
e∈E :v∈e

xe ≤ 1 ∀v ∈ V

xe ∈ {0, 1} ∀e ∈ E

Special case: bipartite matching ≡ assignment problems

27

Matching

Definition (Matching Theory Terminology)

Matching: set of pairwise non adjacent edges
Covered (vertex): a vertex is covered by a matching M if it is incident to an edge in M

Perfect (matching): if M covers each vertex in G

Maximal (matching): if M cannot be extended any further
Maximum (matching): if M covers as many vertices as possible
Matchable (graph): if the graph G has a perfect matching

max
∑
v∈V

wexe∑
e∈E :v∈e

xe ≤ 1 ∀v ∈ V

xe ∈ {0, 1} ∀e ∈ E

Special case: bipartite matching ≡ assignment problems
27

Vertex Cover

Select a subset S ⊆ V such that each edge has at least one end vertex in S .

min
∑
v∈V

xv

xv + xu ≥ 1 ∀u, v ∈ V , uv ∈ E
xv ∈ {0, 1} ∀v ∈ V

28

Vertex Cover

Select a subset S ⊆ V such that each edge has at least one end vertex in S .

min
∑
v∈V

xv

xv + xu ≥ 1 ∀u, v ∈ V , uv ∈ E
xv ∈ {0, 1} ∀v ∈ V

28

Traveling Salesman Problem

• Given a set of cities and the distances between each pair, the Traveling Salesman Problem
(TSP) seeks to find the shortest possible route that visits each city exactly once and returns to
the starting city.

• n locations, cij cost of travel
Variables:

xij =

{
1
0

Objective:

n∑
i=1

n∑
j=1

cijxij

29

Constraints:

• ∑
j :j ̸=i

xij = 1 ∀i = 1, . . . , n

∑
i :i ̸=j

xij = 1 ∀j = 1, . . . , n

• cut set constraints∑
i∈S

∑
j ̸∈S

xij ≥ 1 ∀S ⊂ N,S ̸= ∅

• subtour elimination constraints∑
i∈S

∑
j∈S

xij ≤ |S | − 1 ∀S ⊂ N, 2 ≤ |S | ≤ n − 1

30

Constraints:

• ∑
j :j ̸=i

xij = 1 ∀i = 1, . . . , n

∑
i :i ̸=j

xij = 1 ∀j = 1, . . . , n

• cut set constraints∑
i∈S

∑
j ̸∈S

xij ≥ 1 ∀S ⊂ N,S ̸= ∅

• subtour elimination constraints∑
i∈S

∑
j∈S

xij ≤ |S | − 1 ∀S ⊂ N, 2 ≤ |S | ≤ n − 1

30

Outline

1. Integer Programming

2. Modeling
Assignment Problem
Knapsack Problem
Set Problems

3. More on Modeling
Graph Problems

Matching
Vertex Cover
Traveling Salesman Problem

Modeling Tricks

4. ITS, Energy Barriers, PPP

31

Modeling Tricks

Objective function and/or constraints do not appear to be linear?
• Absolute values
• Minimize the largest function value
• Maximize the smallest function value
• Constraints include variable division
• Constraints are either/or
• A variable must take one of several candidate values

32

Modeling: Absolute Values

min
∑n

i=1 |fi (x)|

x ∈ Rq

min
∑n

i=1 zi
s.t. zi ≥ fi (x) i = 1..n

zi ≥ −fi (x) i = 1..n
zi ∈ R i = 1..n
x ∈ Rq

n additional variables and 2n additional
constraints.

min
∑n

i=1(z
+
i + z−i)

s.t. fi (x) = z+i − z−i i = 1..n
z+i , z−i ≥ 0 i = 1..n

x ∈ Rq

2n additional variables and n additional
constraints.

33

Modeling: Absolute Values

min
∑n

i=1 |fi (x)|

x ∈ Rq

min
∑n

i=1 zi
s.t. zi ≥ fi (x) i = 1..n

zi ≥ −fi (x) i = 1..n
zi ∈ R i = 1..n
x ∈ Rq

n additional variables and 2n additional
constraints.

min
∑n

i=1(z
+
i + z−i)

s.t. fi (x) = z+i − z−i i = 1..n
z+i , z−i ≥ 0 i = 1..n

x ∈ Rq

2n additional variables and n additional
constraints.

33

Modeling: Absolute Values

min
∑n

i=1 |fi (x)|

x ∈ Rq

min
∑n

i=1 zi
s.t. zi ≥ fi (x) i = 1..n

zi ≥ −fi (x) i = 1..n
zi ∈ R i = 1..n
x ∈ Rq

n additional variables and 2n additional
constraints.

min
∑n

i=1(z
+
i + z−i)

s.t. fi (x) = z+i − z−i i = 1..n
z+i , z−i ≥ 0 i = 1..n

x ∈ Rq

2n additional variables and n additional
constraints.

33

Modeling: Minimax

Minimize the largest of a number of function values:

min max{f1(x), . . . , fn(x)}

• Introduce an auxiliary variable z :
min z

s. t. f1(x) ≤ z

f2(x) ≤ z

34

Modeling: Minimax

Minimize the largest of a number of function values:

min max{f1(x), . . . , fn(x)}

• Introduce an auxiliary variable z :
min z

s. t. f1(x) ≤ z

f2(x) ≤ z

34

Modeling: Divisions

Constraints include variable division:
• Constraint of the form

a1x + a2y + a3z

d1x + d2y + d3z
≤ b

• Rearrange:

a1x + a2y + a3z ≤ b(d1x + d2y + d3z)

which gives:

(a1 − bd1)x + (a2 − bd2)y + (a3 − bd3)z ≤ 0

35

Modeling: Divisions

Constraints include variable division:
• Constraint of the form

a1x + a2y + a3z

d1x + d2y + d3z
≤ b

• Rearrange:

a1x + a2y + a3z ≤ b(d1x + d2y + d3z)

which gives:

(a1 − bd1)x + (a2 − bd2)y + (a3 − bd3)z ≤ 0

35

Modeling: “Either/Or Constraints”

In conventional mathematical models, the solution must satisfy all constraints.
Suppose that your constraints are “either/or”:

a1x1 + a2x2 ≤ b1 or
d1x1 + d2x2 ≤ b2

Introduce new variable y ∈ {0, 1} and a large number M:

a1x1 + a2x2 ≤ b1 +My if y = 0 then this is active
d1x1 + d2x2 ≤ b2 +M(1 − y) if y = 1 then this is active

36

Modeling: “Either/Or Constraints”

In conventional mathematical models, the solution must satisfy all constraints.
Suppose that your constraints are “either/or”:

a1x1 + a2x2 ≤ b1 or
d1x1 + d2x2 ≤ b2

Introduce new variable y ∈ {0, 1} and a large number M:

a1x1 + a2x2 ≤ b1 +My if y = 0 then this is active
d1x1 + d2x2 ≤ b2 +M(1 − y) if y = 1 then this is active

36

Modeling: “Either/Or Constraints”

Binary integer programming allows to model alternative choices:

• Eg: 2 feasible regions, ie, disjunctive constraints, not possible in LP.
introduce y auxiliary binary variable and M, a big number:

Ax ≤ b +My if y = 0 then this is active
A′x ≤ b′ +M(1 − y) if y = 1 then this is active

37

Modeling: “Either/Or Constraints”
Generally:

a11x1 + a12x2 + a13x3 + . . .+ a1mxm ≤ d1
a21x1 + a22x2 + a23x3 + . . .+ a2mxm ≤ d2

...
aN1x1 + aN2x2 + aN3x3 + . . .+ aNmxm ≤ dN

Exactly K of the N constraints must be satisfied.

Introduce binary variables y1, y2, . . . , yN and a large number M

a11x1 + a12x2 + a13x3 + . . .+ a1mxm ≤ d1 +My1
a21x1 + a22x2 + a23x3 + . . .+ a2mxm ≤ d2 +My2

...
am1x1 + aN2x2 + aN3x3 + . . .+ aNmxm ≤ dN +MyN

y1 + y2 + . . . yN = N − K

K of the y -variables are 0, so K constraints must be satisfied

38

Modeling: “Either/Or Constraints”
Generally:

a11x1 + a12x2 + a13x3 + . . .+ a1mxm ≤ d1
a21x1 + a22x2 + a23x3 + . . .+ a2mxm ≤ d2

...
aN1x1 + aN2x2 + aN3x3 + . . .+ aNmxm ≤ dN

Exactly K of the N constraints must be satisfied.
Introduce binary variables y1, y2, . . . , yN and a large number M

a11x1 + a12x2 + a13x3 + . . .+ a1mxm ≤ d1 +My1
a21x1 + a22x2 + a23x3 + . . .+ a2mxm ≤ d2 +My2

...
am1x1 + aN2x2 + aN3x3 + . . .+ aNmxm ≤ dN +MyN

y1 + y2 + . . . yN = N − K

K of the y -variables are 0, so K constraints must be satisfied
38

Modeling: “Either/Or Constraints”

At least K ≤ N of
n∑

j=1
aijxj ≤ bi , i = 1, . . . ,N must be satisfied

introduce yi , i = 1, ...,N auxiliary binary variables

n∑
j=1

aijxj ≤ bi +Myi , i = 1..N

∑
i

yi ≤ N − K

39

Modeling: “Possible Constraints Values”

A constraint must take on one of N given values:

a1x1 + a2x2 + a3x3 + . . .+ amxm = d1 or
a1x1 + a2x2 + a3x3 + . . .+ amxm = d2 or

...
a1x1 + a2x2 + a3x3 + . . .+ amxm = dN

Introduce binary variables y1, y2, . . . , yN :

a1x1 + a2x2 + a3x3 + . . .+ amxm = d1y1 + d2y2 + . . . dNyN

y1 + y2 + . . . yN = 1

40

Modeling: “Possible Constraints Values”

A constraint must take on one of N given values:

a1x1 + a2x2 + a3x3 + . . .+ amxm = d1 or
a1x1 + a2x2 + a3x3 + . . .+ amxm = d2 or

...
a1x1 + a2x2 + a3x3 + . . .+ amxm = dN

Introduce binary variables y1, y2, . . . , yN :

a1x1 + a2x2 + a3x3 + . . .+ amxm = d1y1 + d2y2 + . . . dNyN

y1 + y2 + . . . yN = 1

40

Outline

1. Integer Programming

2. Modeling
Assignment Problem
Knapsack Problem
Set Problems

3. More on Modeling
Graph Problems

Matching
Vertex Cover
Traveling Salesman Problem

Modeling Tricks

4. ITS, Energy Barriers, PPP

41

Resume

1. Integer Programming

2. Modeling
Assignment Problem
Knapsack Problem
Set Problems

3. More on Modeling
Graph Problems

Matching
Vertex Cover
Traveling Salesman Problem

Modeling Tricks

4. ITS, Energy Barriers, PPP

42

References

H.P. Williams, Model Building in Mathematical Programming, John Wiley & Sons, Chichester,
Fifth Edition, 2013.

J. Matousek and B. Gärtner, Understanding and Using Linear Programming, Springer Berlin
Heidelberg, 2007.

Slides based on slide set from Marco Chiarandini (IMADA, SDU)

43

	Integer Programming
	Modeling
	Assignment Problem
	Knapsack Problem
	Set Problems

	More on Modeling
	Graph Problems
	Modeling Tricks

	ITS, Energy Barriers, PPP

