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Integer Linear Programming

Linear Objective
Linear Constraints
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Integer Linear Programming

Linear Objective
Linear Constraints
but! integer variables
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Ax< b x>0 Ax <b y>0

x20 xTnteger x €{0,1}" y integer

Linear Programming Integer Linear Programming Binary Integer Program  Mixed Integer Linear
(LP) (ILP) (BIP) Programming (MILP)
0/1 Integer Programming

max f(x)
g(x) < b  Non-linear Programming (NLP)
x>0



Recall:

® 7, set of integers
® 7T set of positive integer
® 74 set of nonnegative integers ({0} UZ™")

® Ny set of natural numbers, ie, nonnegative integers {0,1,2,3,4, ...}
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Mathematical Programming: Modeling

Find out exactly what the decision maker needs to know:

® which investment?
® which product mix?

® which job j should a person i do?

Define Decision Variables of suitable type (continuous, integer valued, binary) corresponding
to the needs and Known Parameters corresponding to given data.

Formulate Objective Function computing the benefit/cost

Formulate mathematical Constraints indicating the interplay between the different variables.



How to “build” a constraint

® Formulate relationship between the variables in plain words
® Then formulate your sentences using logical connectives and, or, not, implies

® Finally convert the logical statement to a mathematical constraint.

Example

® "The power plant must not work in both of two neighbouring time periods”

on/off is modelled using binary integer variables
o x,=1lorx =0

® x; = 1 implies = x;,1 =0

® X+ x41<1
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The Assignment Problem

Problem

Common application: Assignees are being assigned to perform tasks.

Suppose we have n persons and n jobs
Each person has a certain proficiency at each job.

Formulate a mathematical model that can be used to find an assignment that maximizes the total
proficiency.
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The Assignment Problem

Model

Decision Variables:

Objective Function:
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The Assignment Problem

Model

Decision Variables:

__ J 1if person i is assigned job j
Xi=Yo otherwise,

Objective Function:

fori,j=1,2,...,n
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The Assignment Problem

Model

Decision Variables:

fori,j=1,2,...,

__ J 1if person i is assigned job j
Xi=Yo otherwise,

Objective Function:

n n
maX E E p,'jX,'j

i=1 j=1

where pj; is person i's proficiency at job j



The Assignment Problem
Model

Constraints:
Each person is assigned one job:

n
E xjj =1 for all i
j=1

e.g. for person 1 we get xi1 + x12 +x13 + -+ x1, = 1

Each job is assigned to one person:

n
ZXU =1 for all j
i=1

e.g. for job 1 we get x31 + xo1 + x31 + -+ + x50 = 1

12
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The Knapsack Problem

Problem ..
Input: Given a set of n items, each with a value v; and weight w; (i =1,...,n)

Task: determine (the numbers of) for each item to include in a collection so that the total weight
is less than a given limit, W, and the total value is as large as possible.
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Input: Given a set of n items, each with a value v; and weight w; (i =1,...,n)

Task: determine (the numbers of) for each item to include in a collection so that the total weight
is less than a given limit, W, and the total value is as large as possible.

The “knapsack” name derives from the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most useful items.
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The Knapsack Problem
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Input: Given a set of n items, each with a value v; and weight w; (i =1,...,n)
Task: determine (the numbers of) for each item to include in a collection so that the total weight

is less than a given limit, W, and the total value is as large as possible.

The “knapsack” name derives from the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most useful items.

Assuming we can take at least one of any item and that ), w; > W, formulate a mathematical
model to determine which items give the largest value.
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The Knapsack Problem

Problem ..
Input: Given a set of n items, each with a value v; and weight w; (i =1,...,n)

Task: determine (the numbers of) for each item to include in a collection so that the total weight
is less than a given limit, W, and the total value is as large as possible.

The “knapsack” name derives from the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most useful items.

Assuming we can take at least one of any item and that ), w; > W, formulate a mathematical
model to determine which items give the largest value.

Model used, eg, in capital budgeting, project selection, etc.
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The 0/1 Knapsack Problem

Decision Variables:

v 1 if item 7 is taken
"7 1 0 otherwise,

Objective Function:

n

maxXx E Vi X

i=1

Constraints:
Knapsack capacity restriction:

n
Z Wi X S W
i=1

fori=1,2...,

15



Run Gurobi/Python

pip install gurobipy
python3 knapsack.py

https://tacsy-school-2024.algochem. techfak.de/
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Set Covering

Problem
Given: a set of regions, a set of possible construction locations for emergency centers, regions that
can be served in less than 8 minutes, cost of installing an emergency center in each location.

Task: decide where to install a set of emergency centers such that the total cost is minimized and
all regions are safely served

18



Set Covering

Problem

Given: a set of regions, a set of possible construction locations for emergency centers, regions that
can be served in less than 8 minutes, cost of installing an emergency center in each location.
Task: decide where to install a set of emergency centers such that the total cost is minimized and
all regions are safely served

As Combinatorial Optimization Problem (COP): M = {1,..., m} regions, N ={1,...,n}
centers, S; C M regions serviced by j € N in 8 min.

pgl?\l ch USJ:M

JET JET

18



Set Covering

Problem
Given: a set of regions, a set of possible construction locations for emergency centers, regions that
can be served in less than 8 minutes, cost of installing an emergency center in each location.

Task: decide where to install a set of emergency centers such that the total cost is minimized and
all regions are safely served

As Combinatorial Optimization Problem (COP): M = {1,..., m} regions, N ={1,...,n}
centers, S; C M regions serviced by j € N in 8 min.

;ngl?\l ch USj:M

JET JET

regions: M = {1,...,5}
centers: N = {1,...,6}
cost of centers: ¢; =1 Vj=1,...,6

coverages: 51 = (1,2), 5, = (1,3,5), 53 = (2,4,5), 54 = (3), S5 = (1), Se = (4.5)
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Example

® regions: M = {1,...,5}
centers: N = {1,...,6}
cost of centers: ¢; =1 Vj=1,...,6
coverages: 51 = (1,2), 5, = (1,3,5), 53 = (2,4,5),5, = (3), S5 = (1), S = (4,5)

X1 X2 X3 X4 X5 X6
S S S35 S4 S5 Se

171 1 0 0 1 0

A_ 2|1 0 1 0 0 0
3|10 1 0 1 0 O
410 0 1 0 0 1

5 L0 1 1 0 0 1




As a BIP:

Variables:
x € B", x; = 1 if center j is selected, 0 otherwise

Objective:
n
min Z G X;
j=1

Constraints:

1
® incidence matrix: aj = {0

n
* D jmraix > 1

20



Set covering
cover each of M at least once

1. min, >
2. all RHS terms are 1

3. all matrix elements are 1

min ¢’ x
Ax > 1
x e B"

Set packing
cover as many of M without
overlap

1. max, <

2. all RHS terms are 1

3. all matrix elements are 1
max ¢’ x

Ax <1
x € B”

Set partitioning
cover exactly once each element
of M

1. max or min, =
2. all RHS terms are 1

3. all matrix elements are 1

max ¢ x
Ax =1
x e B"”
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Set covering
cover each of M at least once

1. min, >
2. all RHS terms are 1

3. all matrix elements are 1

min ¢’ x
Ax > 1
x e B"

Generalization: RHS > 1
Application examples:

Set packing
cover as many of M without
overlap

1. max, <

2. all RHS terms are 1

3. all matrix elements are 1
max ¢’ x

Ax <1
x € B”

® Aircrew scheduling: M: legs to cover, N: rosters

® Vehicle routing: M: customers, N: routes

Set partitioning
cover exactly once each element
of M

1. max or min, =
2. all RHS terms are 1

3. all matrix elements are 1

max ¢ x
Ax =1
x e B"”
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A good written example of how to present a model:

2.1. Notation

Let N be the set of operational flight legs and K the set
of aircraft types. Denote by n* the number of available
aircraft of type k € K. Define ¥, indexed by p, as the
set of feasible schedules for aircraft of type k € K and
let index p = 0 denote the empty schedule for an aircraft.
Next associate with each schedule p € Q* the value c}
denoting the anticipated profit if this schedule is as-
signed to an aircraft of type k € K and a, a binary con-
stant equal to 1 if this schedule covers flight leg i € N
and 0 otherwise. Furthermore, let S be the set of stations
and S* ¢ S the subset having the facilities to serve air-
craft of type k € K. Then, define of, and d%, to equal to
1 if schedule p, p € ©*, starts and ends respectively at
station s, s € S¥, and 0 otherwise.

Denote by 65, p € Q"\{0}, k € K, the binary decision
variable which takes the value 1 if schedule p is assigned
to an aircraft of type k, and 0 otherwise. Finally, let 65,
k € K, be a nonnegative integer variable which gives the
number of unused aircraft of type k.

2.2. Formulation

3@, —0k)0i=0 VkeK VseS, (3

peat
S 6i=n VkeK, @
pent
0i=0 VkeK Vpeq (5)
0% integer Vk € K, Vp € Q. (6)

The objective function (1) states that we wish to max-
imize the total anticipated profit. Constraints (2) require
that each operational flight leg be covered exactly once.
Constraints (3) correspond to the flow conservation
constraints at the beginning and the end of the day at
each station and for each aircraft type. Constraints (4)
limit the number of aircraft of type k € K that can be
used to the number available. Finally, constraints (5)
and (6) state that the decision variables are nonnegative
integers. This model is a Set Partitioning problem with
additional constraints.

Using these definitions, the DARSP can be formulated [from G. Desaulniers, J. De-roslerl Y. Duma: M.M. Solomon and F.
as: Soumis. Daily Aircraft Routing and S li Sci 1997,
43(6), 841-855]

Maximize Y, Y, ckéf (1)
keK pent

subject to:
Y Y aifj=1 VieN, (2)

kek peat
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Matching

Definition (Matching Theory Terminology)
Matching: set of pairwise non adjacent edges
Covered (vertex): a vertex is covered by a matching M if it is incident to an edge in M
Perfect (matching): if M covers each vertex in G
Maximal (matching): if M cannot be extended any further
Maximum (matching): if M covers as many vertices as possible
Matchable (graph): if the graph G has a perfect matching

27



Matching

Definition (Matching Theory Terminology)
Matching: set of pairwise non adjacent edges
Covered (vertex): a vertex is covered by a matching M if it is incident to an edge in M
Perfect (matching): if M covers each vertex in G
Maximal (matching): if M cannot be extended any further
Maximum (matching): if M covers as many vertices as possible
Matchable (graph): if the graph G has a perfect matching

max > WeXe
vev

> x. <1 Vv eV

ecE:vee

xe € {0,1} Ve € E
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Matching

Definition (Matching Theory Terminology)
Matching: set of pairwise non adjacent edges
Covered (vertex): a vertex is covered by a matching M if it is incident to an edge in M
Perfect (matching): if M covers each vertex in G
Maximal (matching): if M cannot be extended any further
Maximum (matching): if M covers as many vertices as possible
Matchable (graph): if the graph G has a perfect matching

max > WeXe
vev

> x. <1 Vv eV

ecE:vee

xe € {0,1} Ve € E

Special case: bipartite matching = assignment problems

27



Vertex Cover

Select a subset S C V such that each edge has at least one end vertex in S.

28



Vertex Cover

Select a subset S C V such that each edge has at least one end vertex in S.

min > x,
veV
Xy, +x, >1 Yu,ve V,uv € E

x, € {0,1} Vv e V

28



Traveling Salesman Problem

® Given a set of cities and the distances between each pair, the Traveling Salesman Problem
(TSP) seeks to find the shortest possible route that visits each city exactly once and returns to
the starting city.

® 1 locations, c; cost of travel

Variables:

1
Xij = 0

Objective:

n n
E E CijXij

i=1 j=1

29



Constraints:

ZXU:]'

J#
> xi=1
i)

30



Constraints:
[ ]
EE:XU::l Vi=1,...,n
J#i
d x=1 Vji=1,...,n
ititj

® cut set constraints

YN x>1 VSCN,S#0

i€S jZS

® subtour elimination constraints

S x<isi-1 VSCcN,2<|S|<n-1

i€eS jes

30
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Modeling Tricks

Objective function and/or constraints do not appear to be linear?
® Absolute values
® Minimize the largest function value
® Maximize the smallest function value
® Constraints include variable division

® Constraints are either/or

A variable must take one of several candidate values



Modeling: Absolute Values

min 327y [fi(x)]

x € RY

33



Modeling: Absolute Values

min 327y [fi(x)]

x € R

min Y7, z

s.t. Zi = ..
zi> —fi(x)i=1.n
zie R i=1.n
x € R9

n additional variables and 2n additional
constraints.

33



Modeling: Absolute Values

min 370 [£i(x)]

x € R

min Y7, z

s.t. zi > fi(x) i=1l.n
zi> —fi(x)i=1.n
zie R i=1.n
x € R9

n additional variables and 2n additional
constraints.

+

z; z- i=1.n
0 i=1..n
RY

2n additional variables and n additional
constraints.

33



Modeling: Minimax

Minimize the largest of a number of function values:

min  max{fi(x),..., f(x)}

34



Modeling: Minimax
Minimize the largest of a number of function values:
min  max{f(x),...,f(x)}

® Introduce an auxiliary variable z:

min z

34



Modeling: Divisions

Constraints include variable division:

® Constraint of the form

ar X + ay + asz
dix + doy +dzz

35



Modeling: Divisions

Constraints include variable division:
® Constraint of the form

ar X + ay + asz
dix + doy +dzz

® Rearrange:
airXx + ay + asz S b(dlx + dzy —+ d3Z)

which gives:

(31 — bd]_)X =+ (32 — bdz)y + (33 — bd3)Z S 0

35



Modeling: “Either/Or Constraints”

In conventional mathematical models, the solution must satisfy all constraints.
Suppose that your constraints are “either/or™

aixy + ax»xo S b1 or
dix1 + doxo < b

36



Modeling: “Either/Or Constraints”

In conventional mathematical models, the solution must satisfy all constraints.
Suppose that your constraints are “either/or™

aixy + ax»xo S b1 or
dix1 + doxo < b

Introduce new variable y € {0,1} and a large number M:

aix1 + axxp < by + My if y = 0 then this is active
dixy + doxo < by + M(1—y) if y = 1 then this is active

36



Modeling: “Either/Or Constraints”

Binary integer programming allows to model alternative choices:

® Eg: 2 feasible regions, ie, disjunctive constraints, not possible in LP.
introduce y auxiliary binary variable and M, a big number:

Ax < b+ My if y = 0 then this is active
Ax <b +M(1-y) if y =1 then this is active

37



Modeling: “Either/Or Constraints”

Generally:

aiiXy + apxe +aizxs + ...+ aimxm < di
a21X1 + @20X0 + a3X3 + ... + domXm < db

aniX1 + anexe + anzxz + ... 4 anmXm < dy

Exactly K of the V constraints must be satisfied.

38



Modeling: “Either/Or Constraints”

Generally:
aiiXy + apxe +aizxs + ...+ aimxm < di

a21X1 + @20X0 + a3X3 + ... + domXm < db

aniX1 + anexe + anzxz + ... 4 anmXm < dy

Exactly K of the V constraints must be satisfied.
Introduce binary variables y1, v, ..., yy and a large number M

ayixy + apxe + aizxz + ...+ aimxm < di + My;
a21X1 + axnXo 4+ a23X3 + ... + aomXm < do + My

am1X1 + an2xe + anzxz + ... + anmXm < dy + Myy

vity+..yn=N—-K

K of the y-variables are 0, so K constraints must be satisfied
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Modeling: “Either/Or Constraints”

n
At least K < N of >~ ajix; < b;, i =1,..., N must be satisfied
j=1
introduce y;, i = 1, ..., N auxiliary binary variables

Za,-jxj < b; + My;, i=1.N

j=1
Y v<N—K

39



Modeling: “Possible Constraints Values”

A constraint must take on one of V given values:

a1x1 + axxo + azxz + ...+ amxm = di or
a1x1 + axxo +azxz + ...+ amxm = do or

aixy + axxo +azxzs+ ...+ amxm = dN

40



Modeling: “Possible Constraints Values”

A constraint must take on one of N given values:

a1x1 + axxo + azxz + ...+ amxm = di or
a1xy + axxo +azxz + ...+ amxm = da oOr

aixy + axxo +azxzs+ ...+ amxm = d[\/

Introduce binary variables y1, yo, ..., yy:

aixXy + axxo +azxz+ ...+ amxXm = dl)/l + d2y2 —+ ... dN}/N

nn+y+...yn=1

40
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