Integer Linear Programming, Min-Max,
Max-Min, Energy Barriers, and Enumeration of
Solutions in a Chemical Reaction Network

Daniel Merkle, Christoph Flamm

July 2, 2024

Contents

1 Introduction 1
1.1 Knapsack Problem Example 2

2 Min-Max, Max-Min, Exercises 4
2.1 Exercise 1 4
2.2 Exercise 2 e 5
2.3 Exercise 3 6
2.4 Exercise 4 7

3 Energy Barriers, Min-Max, and Enumeration of Solutions in
CRNs 8
3.1 Enumeration - Introduction and Exercise 8
3.2 Energy barriers - Introduction and Exercise 9

1 Introduction

In this set of exercises, we will explore min-max optimization problems, which
are crucial in various fields such as operations research, computer science, and of
course when considering chemical reaction networks. Min-max problems involve
finding the minimum of the maximum values or the maximum of the minimum
values under certain constraints. These problems can often be challenging and,
in some cases, are NP-complete (we will see that ont of the following problems
will allow us to solve the subset sum problem).

We will start with relatively simple problems that could for sure be solved
without integer linear programming (ILP) tools. As we progress, we will tackle
more complex problems that inherently solve NP-complete problems as a side
effect. In later exercises, we will apply the techniques learned here to real-world
scenarios, such as optimizing chemical reaction networks.

¢ TACsy Daniel Merkle, Christoph Flamm
Do St b st TACsy Summer School Vienna, 2024

To illustrate how to use Gurobi with Python for solving optimization prob-
lems, we will first solve a classical problem known as the Knapsack Problem.

All example code, code templates, and solutions (after the summer school)
can be found here: https://tacsy-school-2024.algochem.techfak.de/

1.1 Knapsack Problem Example

Problem Statement: Given a set of items, each with a weight and a value,
determine the number of each item to include in a collection so that the total
weight is less than or equal to a given limit and the total value is as large as
possible.

Example: Consider the following items with their weights and values:

e Item 1: weight = 2, value = 3
e Item 2: weight = 3, value = 6
e Item 3: weight = 4, value = 5
e Item 4: weight = 5, value = 8

The weight limit of the knapsack is 5.

Decision Variables
x; fori=1,2,....n (z; €{0,1})

Here, z; is a binary variable indicating whether item 7 is included in the knapsack
(1) or not (0).

Objective Function
n
Maximize Z Vi T4
i=1
Where v; is the value of item i.
Constraints

n
=1

Where w; is the weight of item i, and W is the maximum weight capacity of
the knapsack.

Page 2

https://tacsy-school-2024.algochem.techfak.de/

<TACsy p) Daniel Merkle, Christoph Flamm
L e TACsy Summer School Vienna, 2024

Solution to the Example

To solve this example, we use the following decision variables:
=1, x9=1, x23=0, x4=0
This means we include item 1 and item 2 in the knapsack.
o Total weight =2-14+3-1+4-04+5-0=5
o Total value=3-14+6-1+5-04+8-0=9

Python Code using Gurobi:

1 import gurobipy as gp
from gurobipy import GRB

def solve_knapsack(weights, values, capacity):

3
4
5 # Number of items
6 n = len(weights)

8 # Create a new model
9 model = gp.Model("knapsack")

11 # Create variables

12 x = model.addVars(n, vtype=GRB.BINARY, name="x")

13

14 # Set objective: maximize total value

15 model.setObjective(gp.quicksum(values[i] * x[i] for i in range(n)),

GRB.MAXIMIZE)
16
17 # Add constraint: total weight must be less than or equal to capacity
18 model.addConstr (gp.quicksum(weights[i] * x[i] for i in range(n)) <=
capacity, '"capacity")

20 # Optimize the model
21 model.optimize ()

3 # Print the results
A if model.status == GRB.OPTIMAL:

25 print("Optimal solution found")

26 selected_items = [i for i in range(n) if x[il.x > 0.5]
27 print(f"Selected items: {selected_items}")

28 print (f"Total value: {model.objVall}")

29 else:

30 print("No optimal solution found")

32 if __name__ == "__main__":

33 # Example data

34 weights = [2, 3, 4, 5]

35 values = [3, 6, 5, 8]

36 capacity = 5

38 solve_knapsack(weights, values, capacity)

Page 3

¢ TACsy Daniel Merkle, Christoph Flamm
Do St b st TACsy Summer School Vienna, 2024

2 Min-Max, Max-Min, Exercises

Each exercise in this document is divided into three parts: a) an example and
solving it, b) the mathematical formulation, which includes defining decision
variables, the objective function, and the constraints, and c¢) the implementation
using Python and Gurobi.

2.1 Exercise 1

Problem Statement: Consider ¢ variables z; for j = 0,1,...,% — 1 such that
m < x; < M. You need to select which variables x; are chosen for the sum, such
that the sum of the chosen variables equals a given target sum. Additionally,
you want to minimize the maximum value among the chosen variables.

a) Example

For i = 10, m = 0, M = 20, and the target sum = 100, solve the problem with
pen, paper, and brain.

b) Mathematical Formulation

Define the decision variables, the objective function, and the constraints.

¢) Implementation

Implement a solution to the problem using Python and Gurobi.

Page 4

¢ TACsy Daniel Merkle, Christoph Flamm
it Sl b comtto TACsy Summer School Vienna, 2024

2.2 Exercise 2

Problem Statement: Consider ¢ variables z; for j =0,1,...,7 — 1 such that
m < x; < M. You need to select which variables x; are chosen for the sum, such
that the sum of the chosen variables equals a given target sum. Additionally,
you want to maximize the minimum value among the chosen variables.

a) Example

For ¢ =10, m = 0, M = 20, and the target sum = 100, solve the problem with
pen, paper, and brain.

b) Mathematical Formulation

Define the decision variables, the objective function, and the constraints.

c) Implementation

Implement a solution to the problem using Python and Gurobi.

Page 5

¢ TACsy Daniel Merkle, Christoph Flamm
Do St b st TACsy Summer School Vienna, 2024

2.3 Exercise 3

Problem Statement: Consider the numbers 5,8, 15,21, 22, 25, 26, 27, 36, 50.
For each z;, let x; be one of the given numbers. Select which variables z; are
chosen for the sum, such that the sum of the chosen variables equals 100. Addi-
tionally, you want to minimize the maximum value among the chosen variables.

a) Example

For the given numbers and the target sum = 100, solve the problem with pen,
paper, and brain.

b) Mathematical Formulation

Define the decision variables, the objective function, and the constraints.

c) Implementation

Implement a solution to the problem using Python and Gurobi.

Page 6

¢ TACsy Daniel Merkle, Christoph Flamm
Do St b st TACsy Summer School Vienna, 2024

2.4 Exercise 4

Problem Statement: Consider the numbers 5,8, 15,21, 22, 25, 26, 27, 36, 50.
For each z;, let x; be one of the given numbers. Select which variables z; are
chosen for the sum, such that the sum of the chosen variables equals 100. Addi-
tionally, you want to maximize the minimum value among the chosen variables.

a) Example

For the given numbers and the target sum = 100, solve the problem with pen,
paper, and brain.

b) Mathematical Formulation

Define the decision variables, the objective function, and the constraints.

c) Implementation

Implement a solution to the problem using Python and Gurobi.

Page 7

Daniel Merkle, Christoph Flamm
TACsy Summer School Vienna, 2024

3 Energy Barriers, Min-Max, and Enumeration
of Solutions in CRNs

3.1 Enumeration - Introduction and Exercise

The following code provides all hyperedges of a chemical reaction network un-
derlying the non-oxidative pentose phosphate pathway (PPP) and should be
considered as an example only. Details can be found in the additional material.
Below is the python/Gurobi code to find an optimal solution using the sum of
flows as an objective. In addition, we enforce, among other flows, the inflow
of Fructose-6-Phosphate and the outflow of Fructose-6-Phosphate. Here is the
code to find an optimal solution, using balance constraints:

1 hyperedges = {

2 3: ([’Ribulose-5-Phosphate’], [’p_{0,0}’]1),

3 6: ([’Ribulose-5-Phosphate’, ’p_{0,0}’1, [’p_{0,1}’, ’p_{0,2}°1),
4 9: ([’p_{0,1}’, ’p_{0,2}’1, [’Fructose-6-Phosphate’, ’p_{0,3}’1),
5 11: ([’p_{0,0}’, ’p_{0,1}’], [’p_{0,3}’, ’p_{0,4}’1),

6 13: ([’Ribulose-5-Phosphate’, ’p_{0,2}’], [’Fructose-6-Phosphate’,

’p_{0,5}°1),

7 14: ([’Fructose-6-Phosphate’, ’p_{0,3}’], [’Fructose-6-Phosphate’,
’p_{0,3¥3°1),

8 16: ([’Fructose-6-Phosphate’, ’p_{0,5}’1, [’p_{0,3}’, ’p_{0,6}°1),

9 17: ([’Fructose-6-Phosphate’, ’p_{0,2}’], [’Ribulose-5-Phosphate’,
’p_{0,3}’1),

10 18: ([’Fructose-6-Phosphate’, ’p_{0,0}’], [’p_{0,1}’, ’p_{0,3}’1),
11 20: ([’p_{0,3}’, ’p_{0,4}’], [’Fructose-6-Phosphate’, ’p_{0,7}’]),

12 21: ([’Ribulose-5-Phosphate’, ’p_{0,3}’], [’Fructose-6-Phosphate’,
'p_{0,2}1°1),

13 22: ([’p_{0,1}’, ’p_{0,3}’]1, [’Fructose-6-Phosphate’, ’p_{0,0}’]),

14 23: ([’p_{0,4}’, ’p_{0,5}’]1, [’p_{0,6}’, ’p_{0,7}°1),

15 24: ([’p_{0,2}’, ’p_{0,4}’]1, [’Ribulose-5-Phosphate’, ’p_{0,7}’]1),

16 25: ([’p_{0,0}’, ’p_{0,4}’1, [’p_{0,1}’, ’p_{0,7}°1),

17 26: ([’Ribulose-5-Phosphate’, ’p_{0,5}’1, [’p_{0,2}’, ’p_{0,6}’1),
18 27: ([’p_{0,1}’, ’p_{0,5}’1, [’p_{0,0}’, ’p_{0,6}°1),
19 29: ([’p_{0,2}’1, [’p_{0,8}’1),
20 31: ([’p_{0,0}’, ’p_{0,8}’1, [’p_{0,9}°1),
21 33: ([’p_{0,2}’, ’p_{0,8¥°1, [’p_{0,10}°1),

2 36: ([’H20’, ’p_{0,9}’]1, [’p_{0,11}’, ’p_{0,12}’1),
23 37: ([’H20°, ’p_{0,9}’1, [’p_{0,4}’, ’p_{0,113°1),

4 39: ([’H20’, ’p_{0,10}’], [’p_{0,11}’, ’p_{0,13}’1),

5 40: ([’H20°, ’p_{0,10}’], [’Fructose-6-Phosphate’, ’p_{0,11}’1),
26 41: ([1, [’H20°]1),
27 42: ([1, [’Ribulose-5-Phosphate’]),
28 43: ([’Fructose-6-Phosphate’], [1),
29 44: ([’p_{0,11}°1, [1)
30 }

32 # Create the model
33 model = Model (’HypergraphFlow’)

35 # Create variables

36 x = {}
37 for e_id in hyperedges:
38 x[e_id] = model.addVar (vtype=GRB.INTEGER, name=f’x_{e_id}’)

Page 8

Daniel Merkle, Christoph Flamm
TACsy Summer School Vienna, 2024

10 # Update model to integrate new variables
41 model.update()

43 # Flow conservation constraints

14 vertices = set(v for e in hyperedges.values() for v in e[0] + e[1])

15

16 for v in vertices:

A7 inflow = quicksum(x[e_id] for e_id, e in hyperedges.items() if v in e[1])

48 outflow = quicksum(x[e_id] for e_id, e in hyperedges.items() if v in
e[0])
49 model .addConstr(inflow == outflow, name=f’flow_conservation_{v}’)

1 # Specific inflow and outflow constraints

> model.addConstr(x[41] == 1, name=’inflow_H20’)

53 model.addConstr(x[42] = , name=’inflow_Ribulose_5_Phosphate’)
54 model.addConstr (x[43] , name=’outflow_Fructose_6_Phosphate’)
55 model.addConstr (x[44] , name=’outflow_p_0_11)

1]
]
= 0o

57 # Objective function: Minimize the sum of flows
55 model.setObjective(quicksum(x[e_id] for e_id in hyperedges), GRB.MINIMIZE)

60 # Optimize the model
61 model.optimize()

63 # Get the optimal solution
64 optimal_solution = {e_id: x[e_id].X for e_id in x if x[e_id].X > 0}

66 # Output the results for the optimal solution

67 print("Optimal Solution:")

68 for e_id, flow in optimal_solution.items():

69 tails, heads = hyperedges[e_id]

70 print (f’Hyperedge {e_id}: Flow = {flow}, Heads = {heads}, Tails =
{tails}’)

Exercise 5

Your task is to find a (second best) solution, for which you shall guarantee that
not the same hyperedges as in the best found solution are used. Please first
formulate the additional decision variables and the additional constraints (keep
the objective function unmodified).

3.2 Energy barriers - Introduction and Exercise

Imagine you would know a value for each hyperedge that indicates how likely
or unlikely a reaction is to happen (think about the height of an energy barrier
height). For this, we introduce a value r.,, per hyperedge, which should be
considered as predefined constants per hyperedge for the following exercises.

Page 9

¢ TACsy Daniel Merkle, Christoph Flamm
Do St b st TACsy Summer School Vienna, 2024

Exercise 6

We want to find pathways which minimize the energy barrier height of all hy-
peredges used. Your goal is to find solutions which minimize the max of all r.,,
for all hyperedges in a solution.

a)

As usual, introduce decision variables, constraints, and the objective function.

b)

Similar to exercises solved earlier, find a second solution, which uses a different
set of hyperedges compared to the optimal solution. Provide additional decision
variables and constraints.

Page 10

	Introduction
	Knapsack Problem Example

	Min-Max, Max-Min, Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Energy Barriers, Min-Max, and Enumeration of Solutions in CRNs
	Enumeration - Introduction and Exercise
	Energy barriers - Introduction and Exercise

